Chamberlain’s line, clivus-canal angle, Welcker’s basal angle, Boogaard’s angle, and foramen magnum angle: a brief review for type B basilar invagination

José J. C. Nascimento¹, Leandro M. Silva¹; Paula R. B. Diniz¹, Severino A. Araújo-Neto²

¹Federal University of Pernambuco, Recife, Brazil
²Federal University of Paraíba, João Pessoa, Brazil

Introduction
Type B basilar invagination (BI) is an abnormality of the craniovertebral junction (CVJ). Since first descriptions occurred in the 18th and 19th centuries BI have gained remarkable clinical and surgical importance.

Objective
To describe usual craniometric parameters of assessment of type B BI and to discuss future perspectives of craniometry in the field.

Methods
This is a brief review of the literature on the CVJ parameters used for the BI diagnosis. Results: Although there are several craniometric parameters used in the diagnosis of BI, there are few studies on the validation of these parameters on radiography and volumetric images. Accuracy studies for Chamberlain’s line, clivus-canal angle, Boogaard’s angle, Welcker’s basal angle, and foramen magnum angle occurred consistently at CT and MRI. Brachycephaly and reduced cranial height are strongly associated with type B BI.

Conclusion
The classical parameters of the Chamberlain’s line, Boogaard’s angle and clivus-canal angle are still important tests for the diagnostic evaluation of type B BI.

Keywords
Basilar invagination, Skull base, Accuracy, Cephalometry, Diagnostic imaging.

José J. C. Nascimento
josejailson64@gmail.com

© Copyright 2024

Submitted: March 22, 2024
Accepted: April 1, 2024
Published online: April 30, 2024
Introduction

The craniovertebral junction (CVJ) is the transition region between the foramen magnum and the cervical spine, especially the first two cervical vertebrae, atlas (C1) and axis (C2). From the third month of intrauterine development, the occipital bone has four differentiated parts: basioccipital that forms the lower part of the clivus; exoccipital that delimit the foramen magnum laterally and have two articular masses (occipital condyles); and the supraoccipital that delimits the foramen magnum posteriorly and contains the cerebellar fossa (1).

The occipital bone as well as the other regions of the cranial base have a cartilaginous origin from synchondrosis (1). The skull base in humans is more flexed when compared to other primates, this seems to be related to adaptation to accommodate the brain (2). Spheno-occipital synchondrosis has been largely responsible for the flexion of the skull base between the basisphenoid and basioccipital (1, 2).

Dysfunctions in the development of spheno-occipital synchondrosis have been associated with type B basilar invagination (BI) (3, 4). The type B BI is a complex CVJ malformation characterized by basioccipital and exoccipital hypoplasia, which is often associated with posterior tilt of the odontoid process and Chiari malformation (5). In classical studies, the use of the term “basilar impression” or platybasia was very common for BI (6, 7). The clinical repercussion of BI is related to compression of the brainstem and spinal cord, constituting a major group of neurological diseases (5, 6).

At the beginning of the 20th century, radiography began to be used in the BI (7). For a long time, plain radiographs were the only imaging method used in the CVJ evaluation (6, 7). During this period was difficult to make BI diagnosis, mainly due to the lack of specificity of the symptoms and the overlapping of CVJ structures in these images (8). With the advent of sectional imaging methods, the reconstruction of three-dimensional models has become a major tool to evaluate the cervical spine and skull base (9).

The period of the radiography was also marked by the description of several measures to assist in the radiographic evaluation of BI. Since then, many craniometric parameters of the radiographs have also been used in computed tomography (CT) and magnetic resonance imaging (MRI) (9), the latter being one of the most used in the CVJ evaluation (8). Anatomically, the measurements can be classified as primary (skull base) and secondary (cervical spine).

Chamberlain’s line

The Chamberlain line was described in 1939 to evaluate the position of the odontoid process on plain radiographs (6). It is drawn from the posterior margin of the hard palate to the posterior margin of the foramen magnum (Figure 1). Previous descriptive studies have verified normal limits for this parameter, however there was no consensus in the literature regarding these values, probably due to the different imaging methods (10) and population characteristics.

The use of different limits of normality can be a bias for the BI diagnosis and lead to changes in its prevalence in different samples (11). In 2023, a systematic review found a mean normal of 0.63 mm below the Chamberlain’s line for a normal sample population (11). The authors of this review also suggested that BI should be diagnosed in cases of any dens violation > 1.18 mm (11). In 2018, a diagnostic accuracy study at MRI found that a Chamberlain's line violation greater than

Figure 1. Mid-sagittal (T1 MPRAGE) in a control (left) and BI participant (right) showing the distance from the apex of the odontoid to the Chamberlain line. A. odontoid apex is 3 mm below Chamberlain’s line. B. Dens violation is 9.3 mm above.
Chamberlain’s line, clivus-canal angle, Welcker’s basal angle, Boogaard’s angle, and foramen magnum angle: a brief review for type B basilar invagination

7 mm had an accuracy of approximately 90% (12).

Clivus-canal angle

Another classic parameter widely used in BI evaluation is the clivus-canal angle (Figure 2). This parameter is formed by a line tangent to the clivus and another tangent to the posterior portion of the odontoid process (10). Its normal range ranges from 150º in head flexion to 180º in extension. If this angle is less than 150º, there is a suggestion of brainstem compression (9). One study found in CT that clivus-canal angle values < 140º were suggestive of BI, with 82% and 88% of sensitivity and specificity, respectively (13). The authors also observed the diagnostic performance of the clivus axial angle, a new diagnostic parameter that showed 83% and 89% sensitivity and specificity, respectively (13).

Henderson et al. (14) conducted a study with 10 patients with anterior brainstem compression. The results indicated that the correction of clivus-canal angle after surgery was related to a statistically significant clinical improvement. A similar study with a cohort of 5 children also provided similar evidence that the correction of these angle reduces the stress of the odontoid process on the brainstem (15).

Welcker basal angle

Welcker's basal angle is formed by two lines: one from the nasium to the tubercle of the sphenoid bone and the other from this point to the anterior margin of the foramen magnum (Figure 3). Its average is 132º and values greater than 140 indicate the flattening of the skull base (platybasia) (10). In CT study, Batista et al. (16) found in a group of healthy subjects that this angle ranged from 98.1º to 129.3º. In MRI, Frade et al. (17) found a mean of 128.9 ± 6.5º for randomized subjects with no diagnostic hypothesis of CVJ malformations. Nascimento et al. (12) found at MRI a cutoff criterion 142º for type B BI, with sensitivity and specificity of approximately 80%.

![Figure 2. Mid-sagittal (T1 MPRAGE) in a control (left) and BI participant (right) showing the clivus-canal angle. A. Clivus-canal angle is 154.1º. B. Clivus-canal angle is 144.2º.](image-url)
Chamberlain’s line, clivus-canal angle, Welcker’s basal angle, Boogaard’s angle, and foramen magnum angle: a brief review for type B basilar invagination

Boogaard’s angle

The Boogaard’s angle is formed by two lines, one tangent to the plane of the foramen magnum and the other tangent to the clivus, with the vertex of the angle at anterior margin of the foramen magnum (Figure 4) (18). This measurement normally is between 119.5° and 135°, and it is more obtuse in cases of type B BI due to clivus hypoplasia. Ferreira and Botelho (19) found that this angle showed a mean value of 181.9 ± 23.9° for type B BI and 126.2 ± 9.7° for the control group.

Other studies have sought to evaluate the clinical applications of the Boogaard’s angle in the context of CVJ malformations. Data from the literature indicate that high values of this angle were associated with a volume reduction of the posterior cranial fossa (20) and cerebellar tonsil herniation in patients with Chiari malformation (21). In addition, the postoperative Boogaard’s angle was an important predictor of the postoperative prognosis of BI in study by Peng et al. (22).
Foramen magnum angle

More recently, the foramen magnum angle was studied on MRI as a new measure to evaluate type B BI (Figure 5) (23). This parameter is formed by Chamberlain’s lines and McRae’s line, presenting the angle vertex at posterior margin of the foramen magnum. Using the ROC curve, with a value 17° as cutoff criterion the foramen magnum angle showed sensitivity 0.900 and specificity 0.854. Thus, the foramen magnum angle can quantify the severity of type B BI by measuring the clivus hypoplasia, which causes an anterior inclination of the foramen magnum. This phenomenon is directly related to the alteration of the posterior cranial fossa, which can be with a volume reduction and possible herniation of the cerebellum and brainstem through the vertebral canal (23, 24).

![Figure 5. Mid-sagittal (T1 MPRAGE) in a control (left) and BI participant (right) showing the Boogaard’s angle. A. Angle value is 7.8°. B. Angle value is 21.6º.](image)

Future Perspectives in Craniometry

Although some CVJ measurements are almost 80 years old since their first description, only in the last 10 years have the first validations been performed on CT and MRI (12, 13). Recent studies also indicates that brachycephaly is often associated with the type B BI (25). The data indicate that cranial height is reduced in these patients, suggesting that the BI phenomenon can influence the course of cranial development and growth (25-27).

Finally, considering the guidelines established by STARD (28), the cutoff criterion for a diagnostic test should be determined considering concepts such as sensitivity, specificity, and accuracy. Thus, some directions are pertinent and deserve attention in future studies:

1. Diagnostic accuracy studies are still needed in isolated samples of type A BI, which are mainly characterized by atlanto-axial instability.
2. Researchers need to classify the patients in their studies according to each BI subtype, which are conditions completely different from each other.
3. Cranial phenotype (e.g., brachycephaly) can be a factor influencing the craniometric patterns of CVJ.
4. The Chamberlain’s line, Boogaard’s angle and clivus-canal angle are still important tests for the diagnostic evaluation of type B BI at CT and MRI.
5. STARD (Standards for Reporting Diagnostic Accuracy Studies) is recommended for future studies on craniometric accuracy for BI.

References

Chamberlain’s line, clivus-canal angle, Welcker’s basal angle, Boogaard’s angle, and foramen magnum angle: a brief review for type B basilar invagination.

...2022;164:e1262-e1268. Doi: ...
...2015;8;6:118. Doi: ...
...10.1097/BRS.0000000000001509

Leandro M. Silva
José J. C. Nascimento
17.
16.
15.
14.
13.
12.
11.
10.
9.
8.
7.
6.
5.
4.
3.
2.
1.

Silva JAG, Santos, AA, Melo LRS, Araújo AF, Regueira GP. Posterior fossa decompression with tonsillectomy in 104 cases of basilar impression, Chiari malformation and/or syringomyelia. Arq Neuropsiquiatr. 2011;69(5):817-823.


Authors' contribution: J.J.C.N., writing, review, and final approval of the paper; L.M.S., review, image editing, and final approval of the paper; PRBD., review and final approval of the paper; SAA-Neto, review, and final approval of the paper.

Conflict of interest: There was no conflict of interest.

Funding: There was no funding.